Centricity* Cardio Imaging
Centricity Cardio Imaging empowers Cardiologists to enhance patient care thru full clinical access and improved physician productivity.

Centricity Cardio Imaging is GE Healthcare’s next generation cardiology image review and analysis solution that brings enterprise scalability and workflow-enhancing integration to cardiovascular imaging. The Web-based solution provides full clinical access to the patient’s imaging history from practically anywhere where there is an internet connection via a Web-deployable client. With a customizable user interface and a powerful set of clinically-rich tools to support post-procedural analysis, the solution promotes clinician productivity by providing the same user experience, regardless of location. Built on GE’s vendor neutral Centricity Enterprise Archive platform, Centricity Cardio Imaging also helps reduce costs by optimizing storage management for the cardiovascular department and beyond, thereby reducing your IT footprint and the system’s total cost of ownership.
Web-Based Architecture
Centricity Cardio Imaging is built upon a Web-based architecture. This means the full PACS database and the complete set of diagnostic image viewing and analysis tools can be accessed via the Web from any Microsoft® Windows™-based PC that meets a set of minimum specifications.

Taking Multi-Modality to the Next Level
Centricity Cardio Imaging provides robust image viewing capabilities for nearly all DICOM images in a cardiology-specific display protocol. Cardio Imaging also provides advanced cardiac X-ray analysis tools, basic DSA, a 2D/M-Mode/Doppler/stress echocardiography measurement package, a vascular ultrasound measurement package, and advanced 3D/4D echo analysis tools, all accessible to the user agnostic to their location.

Connectivity with GE MUSE®
ECG Management System
The Centricity Cardio Imaging application is interfaced with the GE MUSE ECG Management and CASE® Stress ECG systems. Patient context is shared with the MUSE and CASE systems to allow ECG waveforms and Stress ECG reports to be viewed in conjunction with images from relevant cardiology studies.

Flexible License Structure
Centricity Cardio Imaging features are managed via concurrent floating licenses. Concurrent licensing enables access to the Cardio Imaging application and tools across the hospital enterprise and beyond, from any PC that meets minimum specifications. This flexibility allows you to scale capabilities to your facility's specific needs through efficient sharing of purchased licenses, helping maximize the value of your investment without sacrificing access or functionality.

Enhance Clinical Productivity
The Centricity Cardio Imaging application has an easy-to-learn and intuitive user interface, and runs on the popular Microsoft® Windows 7 operating system, making it easy to get started. Usability is enhanced by the use of multiple monitors, a color Graphical User Interface, tooltips, localization of the application, and the ability to refresh the worklist. Customized toolbar and layout capabilities let clinicians review images in the manner to which they are most accustomed, from wherever they access the system. The result is deep functionality combined with user-specific configurability to ensure the same user experience regardless of location.

EMR Connectivity
Centricity Cardio Imaging supports a URL access or API level interface, allowing the EMR system to launch Centricity Cardio Imaging to view specific imaging exams that are part of a patient’s electronic medical record. Access to the EMR URL interface is controlled by a user privilege and a user-based concurrent license.
Cardiovascular Information System (CVIS) Integration

Create a seamless PACS/CVIS workstation experience by launching Centricity Cardio Imaging directly from GE’s Centricity Cardio Workflow client application. Share and exchange patient and study display context between applications and export image data directly into the Centricity Cardio Workflow CVIS database for inclusion in structured cardiology reports. This provides the user with the workflow and reporting tools of the Centricity Cardio Workflow application, combined with the image display and analysis tools of Centricity Cardio Imaging, working together in a single user desktop.

Flexible DICOM Connectivity

Centricity Cardio Imaging has powerful DICOM connectivity support that allows it to be easily interfaced into any DICOM-compliant imaging network. It may be configured to receive or query/retrieve studies from almost any DICOM server, workstation, or modality. The remote archive support also allows for the configuration of views to multiple archives, providing a way to easily access images stored on legacy archive systems even as your PACS solution grows with new storage solutions. Maximum utility is achieved through the support of multiple modalities and Structured Reports (SR) including DICOM PDF. Send and receive of DICOM images is supported in all standard formats, including both JPEG Lossless and JPEG lossy.

Support for Internationalization

Centricity Cardio Imaging supports viewer display in the following languages:
- English
- Chinese (Simplified) and Chinese (Traditional) (Not supported for EchoPAC plug-in option)
- German
- Japanese (not supported for EchoPAC plug-in option)
- Italian

Image Analysis

- Application and editing of color palettes for Nuclear Medicine images
- Advanced Display Protocols
- Multiple Monitor Support
- Formatted list of related priors studies
- DICOM Send
- Creation of Secondary Capture images
- AVI export to local file system with configurable compression
- Export of images to local file system
- Foundation for optional Advanced Analysis modules and Image Management Tools

Image Review

- Basic review of images and ECGs locally or remotely via the Web
- Fully configurable Graphical User Interface with mouse controlled icons, menus, and keyboard shortcuts, optimized for cardiology workflow
- Multi-modality image viewing (Cardiac Cath, Echo Ultrasound, Vascular Ultrasound, Nuclear Medicine, PET, DSA, X-Ray, CT, MR, and more)
- Viewing of cardiology cine images
- Cine play controls (play/pause, step to next/prev image, adjust playback speed, select display format)
- Mouse wheel navigation of cine images
- Brightness/Contrast
- Pan/Zoom
- Magnification
- Sharpening
- Auto-subtracted display of DSA images
- Simple Annotation (drawing text, lines, arrows, circles on the image)
- Ability to print images to standard Microsoft Windows printers

Administration

- Edit patient demographics
- User management (roles, rights, privileges)
Available Options

Centricity Cardio Imaging is offered in a base-plus-options product structure to help tailor the solution to specific applications and user needs. The base Centricity Cardio Imaging configuration provides for multi-modality image review and easy connection into any DICOM imaging network. The Centricity Cardio Imaging viewer is offered with a wide range of optional software modules that enable the end user to get the functionality they want without purchasing capability they do not need. Below is a short description of the available software modules for Centricity Cardio Imaging. Please see the individual Product Data Sheets for additional details.

Optional Advanced Analysis Tools

Powerful analysis tools increase clinical confidence and further facilitate information flow through the department or enterprise by saving advanced analysis results as a DICOM SR (Structured Report) and/or a DICOM SC (Secondary Capture):

Stenosis Analysis (SA)

Stenosis Analysis of coronary and peripheral vessels is provided through a tight integration with the advanced Q-Angio™ software package from Medis. The stenosis analysis component of Q-Angio™ uses a clinically validated algorithm for automatic contour detection. While the edge detection algorithm is optimized, users may also manually fine-tune the automatically detected edges for higher clinical confidence. Every report includes the reference image, percent area occlusion, percent diameter reduction, and sizes of normal and stenotic vessels (in millimeters). Analysis of bifurcations and ostial segments is possible with an optional additional module.

Ventricular Analysis (VA)

Ventricular Analysis is provided through a tight integration with the advanced Q-Angio™ software package from Medis. Q-Angio™ offers analysis of left ventricular functions using the Centerline, Standford, and Slager wall motion algorithm. The VA Report includes an image with appropriate traced graphic outlines, wall motion graphs, ejection fraction and other related parameters. The volume analysis algorithm calculates the volume of the left ventricle using the Dodge Area-Length method. Integrated ECG trace display allows precise determination of the heart cycles.

Echo Analysis

While the Centricity Cardio Imaging basic review package supports the review of cardiovascular ultrasound studies, the optional Echo Analysis package provides tools for analyzing these images and making the full set of protocol-driven labeled measurements recommended by the American Society for Echocardiography. These tools include the ability to analyze the study in 2D, M-Mode, and Spectral Doppler views.

Stress Echo Analysis

The optional Stress Echo Review module of Centricity Cardio Imaging supports automatic quad-screen Stage & View protocols for viewing multi-stage/multi-view stress echo studies. Wall-motion scoring using color coding to label the wall segments on 16-segment and 17-segment diagrams is provided. The results of the wall-scoring analysis may be exported to a CVIS in the form of a DICOM Structured Report.

Vascular Ultrasound Review & Measurement Module

The Vascular Ultrasound Review & Measurement Module provides all the advanced tools to view, analyze, and display all ICAVL-required labeled measurements of vascular ultrasound images. Measurement categories include the following vessel groups:

- Trans-cranial
- Carotid
- Renal
- Aortic Iliac
- Mesenteric
- Upper Extremities
- Lower Extremities
Advanced analysis using GE EchoPAC system

Centricity Cardio Imaging can be optionally configured with the GE EchoPAC system. The EchoPAC software is a robust clinical software package for the viewing, analyzing and reporting of multi-dimensional echo, vascular and abdominal ultrasound images. The EchoPAC software provides basic and advanced viewing and quantitative analysis capabilities for 2D and multi-dimensional ultrasound parametric images from the GE Healthcare Vivid family of scanners.

Functionality with EchoPAC software:

**Advanced Echo Stress**
- Review of stress-echo studies acquired with the Vivid 7, Vivid 4, Vivid 3, Vivid i, Vivid q, Vivid S5, Vivid S6 and Vivid E9, as well as other DICOM ultrasound systems
- User-definable groups
- Quantitative stress analysis of grayscale 2D and tissue velocity information raw data acquired in parallel on Vivid scanner
- Qualitative wall motion scoring
- Quantitative stress analysis provides three different analysis tools based on TVI data stored during stress acquisition:
  - **Vpeak measurement**: Enables the display of a tissue velocity trace for a selected region of a previously scored segment through the entire heart cycle
  - **Tissue tracking**: Enables visualization of the heart contraction at peak level by color coding the displacement in the myocardium
  - **Quantitative analysis**: Enables further quantitative analysis based on multiple tissue velocity traces

**Measurements and Analysis**
- Personalized measurement protocols allow individual set and order of M&A items
- Measurements can be labeled seamlessly by using protocols or post assignments
- Measurements assignable to protocol capability
- Parameter annotation follow ASE standard
- Stress echo report templates
- Measurements and Analysis
- Robust set of shared service measurements and calculations
- Configuration package to set up a customized set and sequence of measurements to use, defining user-defined measurements and changing settings for the factory defined measurements
- Stress echo support allowing wall motion scoring and automatic stress level labeling of measurements
- Support for measuring DICOM images
- Automatic Doppler trace functionality for use in non-cardiac applications in both live and replay
- Worksheet for review, edit and deletion of performed measurements
- Reporting support allowing a configurable set of measurements to be shown in the exam report
- DICOM SR export of measurement data
- Quantitative analysis package
  - Traces for velocity or derived parameters (strain rate, strain, displacement) inside defined regions of interest as function of time

The EchoPAC extends the accessibility and functionality of GE Healthcare’s Vivid products to the Centricity Cardio Imaging workstation. Through GE’s TruScan Raw Data Architecture the EchoPAC displays exams with the original data sets from Vivid 7, Vivid 3, Vivid 4, Vivid i, Vivid q, Vivid S5, Vivid S6 and Vivid E9 scanners. Consequently users are able to analyze and manipulate exams as if the images were still on the ultrasound system. In addition, DICOM images from other ultrasound systems can be easily viewed and analyzed without the need for screen calibration.
- Contrast analysis with traces for grayscale intensity or angio power inside defined regions of interest as function of time, including post processing ECG triggering and curve fitting for wash in/wash out analysis
- Curved anatomical M-mode display allowing an M-mode along an arbitrary curve in a 2D image
- Parametric imaging tool which gives quantitative data for global and segmental wall motion
  - Allows assessment at a glance by combining three longitudinal views into one full bull’s-eye view
  - Integrated into M&A package with specialized report templates
  - 2D strain-based data moves into clinical practice
  - Intuitive workflow with adaptive ROI, quick tips and combined display of traces from all segments
- Image Review
  - TruScan architecture allows for instant access/recall to digital raw data for analysis and reporting
  - EchoPAC Plug In image browser displays from current and stored exams for quick and efficient serial image review
  - Thumbnail image display for quick overview
  - Image play, freeze and single frame advance are possible in the image review screen
  - Flexible image layout with multiple images allows for serial comparison of image data from different exam dates (up to 12 images single frames and cine loops)
  - User manual available on-line through “Help” button
- Image Post Processing
  - GE raw data enables “scanner” post-processing functionality:
    - Anatomical M-mode
    - Compress/reject
    - Gain
    - Cine speed adjustment
    - Freeze/unfreeze
    - Frame-by-frame review of cine loops
    - Up/down and invert
    - Zoom and pan facility
    - Tint
    - Color map selection
    - DDP control
    - Color display on/off
    - Horizontal sweep adjustment
    - Baseline shift
    - Physiological traces control (gain and position)
    - Tissue priority
    - Variance
- Workflow/Productivity/Connectivity
  - The EchoPAC Plug In module is launched by the Cardio Imaging for review of Vivid exams using the TruScan Data architecture of the Vivid product line
- Digital raw data (single frames and cine loop of 2D, 4D M-mode, TVI, Spectral and Color Doppler modalities) enables image review at the original resolution and frame rate from the Vivid 7, Vivid 4, Vivid 3, Vivid i, Vivid q, Vivid S5, Vivid S6 and Vivid E9 ultrasound units
- ECG, phono and three auxiliary traces recorded with raw data capture

Advanced 4D Package
- 4D views
  - Auto alignment to help define standard orientation of acquired 4D data
  - Standard views, such as 4ch, 2ch, APLAX, ME LAX, septum, mitral valve and aortic valve, are defined from the standard orientation
  - Automatic display of volume renderings and 2D cut planes from standard views
- 4D data cropping
  - Flexible tool for standard or dynamic cropping 4D data using up to six different crop planes
  - Each crop plane can be moved without any restrictions
  - The crop plane positions are visible in both the volume rendering and in the 2D cut plane displays
• 2 Click Crop
  - Intuitive tool for visualization of 4D structures of standard and non-standard views

• Depth render
  - Volume visualization where the color hue changes according to the distance into the image

• Stereo render
  - Volume visualization by stereoscopic display necessitates the use of stereoscopic glasses

• 9 slice/6 slice
  - Simultaneous display of 6 or 9 short-axis slices from the 4D volume data (tissue and color)

• 12 slice
  - Possible to add three long-axis slices showing the three standard views

• FlexiSlice
  - Simultaneous display of three independent random slices through the 4D volume (tissue and color)

• Laser lines
  - Colored lines displaying the origin/location of extracted 2D slices as overlays on the 4D rendered volume

• Automated Function Imaging
  - Parametric imaging tool which gives information about global and segmental wall motion
  - Tri-plane AFI allows assessment at a glance by combining three longitudinal views into one powerful bull's-eye view
  - AFI with TEE
  - Auto 2D EF
  - Integration into M&A package with specialized report templates
  - New simplified workflow with new quick tips and adaptive ROI for robust and reproducible results for the non-expert—helps improve the speed and confidence in understanding the LV function

• Advanced Qscan with Tissue Synchronization Imaging
• 2D strain and strain rate imaging which gives information about synchronicity of myocardial motion
• Delayed myocardial segments produce red overlay while segments with early motion are green
• Available in live scanning on the Vivid scanner, as well as an offline calculation in EchoPAC derived from tissue Doppler data
• Additional features in combination with multi-dimensional imaging option:
  - Efficient segment-specific TSI time measurements
  - Immediate bull's-eye report
  - Automatically calculated TSI synchrony indexes
  - TSI surface mapping
  - LV synchronization report template

Intima Media Thickness (IMT) measurement
The IMT option provides automatic measurement of Intima Media Thickness of the carotid artery. The algorithm works with TruScan raw data images from the GE Vivid family of ultrasound scanners.
  - Automated measurement of IMT rather than the conventional way of measuring the IMT manually
  - Results representative of a region rather than a single point of a vessel wall
  - Helps reduce examination time by improving the process of measuring the IMT
Advanced Analysis Tools with integrated TomTec imaging system

Advanced 3D/4D Echo Ultrasound Analysis Tools
A complete suite of advanced analysis tools is provided through tight integration with software modules provided by TomTec® Imaging Systems. The following TomTec Clinical Application Packages (CAPs) are available for purchase through GE. See the TomTec literature for more detailed descriptions of each module:

4D Left Ventricular Analysis CAP
The 4D Left Ventricular Analysis Clinical Application Package features an advanced automatic contour-finding algorithm that quantifies left ventricular (LV) function and dyssynchrony in a fast and accurate manner with reproducible results.

4D Right Ventricular Function CAP
The 4D Right Ventricular Function Clinical Application Package (CAP) provides a unique 3D surface model that is used to represent the true shape and size of the RV and provides much more accurate results.

4D Cardio-View™ 3.0
The 4D Cardio-View Clinical Application Package is an offline solution to analyze, report, and archive 3D echo data provided in various formats by most 3D ultrasound vendors.

M’Ath® Basic CAP
The M’Ath Basic Clinical Application Package provides accurate and fast information for each stage of atherosclerosis for a variety of vessels using carotid Intima-Media Thickness (IMT), a widely accepted independent marker for early atherosclerosis and myocardial infarction risk.

M’Ath Professional CAP
The M’Ath Professional Clinical Application Package provides accurate and fast information for each stage of atherosclerosis for a variety of vessels using carotid Intima-Media Thickness (IMT), a widely accepted independent marker for early atherosclerosis and myocardial infarction risk. Additionally, this package also provides the ability to perform distensibility measurements to supplement IMT data and provide even more precise results.

4D Mitral Valve Assessment CAP
The 4D Mitral Valve Assessment Clinical Application Package provides full and accurate detail for evaluating mitral valve morphology using 3D trans-esophageal echocardiography (3D TEE).

2D Strain Analysis CAP
The 2D Cardiac Performance Analysis Clinical Application Package provides a robust ability to analyze myocardial function, thereby helping to improve the diagnostic capabilities of the cardiologist. Based on innovative speckle tracking algorithms, the angle independent analysis of myocardial performance helps provide a faster and more accurate diagnosis as well as a more accurate therapy follow-up.
Other Image Management Tools

Further streamline image management to enhance workflow with additional software options:

Quality Control (QC)
Transform Centricity Cardio Imaging into a powerful QC tool that can directly modify image sequences and DICOM data, including the ability to edit patient demographics, split/merge/remove studies, add/remove/reorder series, and add/remove images.

Windows Printing
Full print capabilities for hardcopy image and report distribution.

CD/DVD Burning
Optional centralized solution to burn images and reports directly from PACS to CD or DVD and distribute images anywhere with the inclusion of the Centricity DICOM Viewer on to the media.

Software-Only Solution

The Centricity Cardio Imaging Application Server and workstation client are offered as software-only products. Standard off-the-shelf hardware servers, storage solutions, and PCs designed to meet or exceed the minimum specifications required by Centricity Cardio Imaging may also be purchased from GE. Installation in virtualized environments is supported.
Recommended Hardware Specs

GE Healthcare-supplied servers are set up with a VMware ESXi virtualization layer that meets the requirements. The servers are intended to host a single virtual machine only. Customer-supplied VMware ESXi environments need to comply with the following requirements:

<table>
<thead>
<tr>
<th>Item</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMware Product and Version</td>
<td>ESX 4.1 or ESXi 5.0 ('vSphere') (preferred)</td>
</tr>
<tr>
<td>VMware ESXi Licensing</td>
<td>Base ESXi host license suffices</td>
</tr>
<tr>
<td>VMware vSphere Edition</td>
<td>No vSphere features required for basic operation</td>
</tr>
</tbody>
</table>

This section below sets out generic criteria for selecting a suitable server for hosting the GE Healthcare-supplied Virtual Machine image of the Cardio Imaging application, as well as the client workstation.

<table>
<thead>
<tr>
<th>Item</th>
<th>Recommended</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>64-bit capable, Quad core</td>
</tr>
<tr>
<td>CPU Virtualization Support</td>
<td>Intel-VT capable and enabled in BIOS</td>
</tr>
<tr>
<td>Bootable storage device for ESXi*</td>
<td>2 GB free space on internal hard drive</td>
</tr>
<tr>
<td>Memory</td>
<td>8 GB, 64-bit capable, properly aligned per channel and CPU banks for optimal performance</td>
</tr>
<tr>
<td>Hard Disks</td>
<td>6x 146 GB SAS (2-OS, 3-VMs, 1-Spare)</td>
</tr>
<tr>
<td>Disk RPM</td>
<td>10K</td>
</tr>
<tr>
<td>RAID Config</td>
<td>2xHDD: ESXi-RAID 1</td>
</tr>
<tr>
<td></td>
<td>3xHDD: VM Data Storage-RAID 5</td>
</tr>
<tr>
<td></td>
<td>1xHDD: Hot Spare</td>
</tr>
<tr>
<td>Optical Drive</td>
<td>CD/DVD-RW combo drive</td>
</tr>
<tr>
<td>Network</td>
<td>2x 1 GB Ethernet</td>
</tr>
<tr>
<td>Network Bandwidth</td>
<td>1 Gbit</td>
</tr>
<tr>
<td>ESXi Compatibility</td>
<td>Server is listed on VMware ESXi 4.1 &amp; ESXi 5.0 Hardware Compatibility List</td>
</tr>
<tr>
<td>Power Supply</td>
<td>2x 750 Watt or 2x 460 Watt for Energy Star approved servers</td>
</tr>
</tbody>
</table>

**Recommended Model:** HP ProLiant DL360p G8
**CCI VM**

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMWare Virtual Hardware version</td>
<td>Version 7</td>
</tr>
<tr>
<td>Guest OS Type</td>
<td>Microsoft® Windows Server 2008 R2 (64bit)</td>
</tr>
<tr>
<td>Memory</td>
<td>4096 MB</td>
</tr>
<tr>
<td>VCPUs</td>
<td>2 VCPU</td>
</tr>
<tr>
<td>Video Card</td>
<td>8 MB Video RAM (sufficient to support 1 monitor, Resolution 800 x 600, Color Depth 24)</td>
</tr>
<tr>
<td>Floppy Drive 1</td>
<td>Floppy Drive 1</td>
</tr>
<tr>
<td>CD/DVD Drive 1</td>
<td>CD/DVD Drive 1 connected at power mode</td>
</tr>
<tr>
<td>Network Adapter 1</td>
<td>1 Gbit</td>
</tr>
<tr>
<td>SCSI Controller 0</td>
<td>(VMware default)</td>
</tr>
<tr>
<td>Virtual Disk 1</td>
<td>Size: 100 GB: Thick provisioned</td>
</tr>
</tbody>
</table>

**Recommended Client Hardware Configuration:**

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processors</td>
<td>Intel four cores (also called Quad Cores), 3.2 GHz, 8 MB Cache</td>
</tr>
<tr>
<td>Main Memory</td>
<td>4 GB 1333 MHz DDR2</td>
</tr>
<tr>
<td>Mass Storage</td>
<td>HD 120 GB SATA2 16 MB 7200</td>
</tr>
<tr>
<td>Network Interface</td>
<td>1 Gbit</td>
</tr>
<tr>
<td>Monitor</td>
<td>17-inch Color 32-bit color</td>
</tr>
<tr>
<td>Monitor</td>
<td>Monitor shall support 1280 x 1024</td>
</tr>
<tr>
<td>Graphics Board</td>
<td>• PCIe interface</td>
</tr>
<tr>
<td></td>
<td>• 512 MB RAM and above</td>
</tr>
<tr>
<td></td>
<td>• Memory bus width 128-bit or higher</td>
</tr>
<tr>
<td></td>
<td>• Supported resolution 1280 x 1024 or higher</td>
</tr>
<tr>
<td></td>
<td>• Support for DirectX version 9 or newer</td>
</tr>
<tr>
<td></td>
<td>• Support for OpenGL 1.4 or newer</td>
</tr>
<tr>
<td></td>
<td>• For dual monitor – as an example: NVIDIA Quadro FX 1800</td>
</tr>
<tr>
<td></td>
<td>• For 3 (up to 4) monitors two identical video cards</td>
</tr>
<tr>
<td>OS</td>
<td><strong>One of the following:</strong></td>
</tr>
<tr>
<td></td>
<td>• Microsoft® Windows XP Professional 32-bit SP3</td>
</tr>
<tr>
<td></td>
<td>• Microsoft® Windows 7 32-bit</td>
</tr>
<tr>
<td></td>
<td>• Microsoft® Windows 7 64-bit</td>
</tr>
</tbody>
</table>

**Recommended models:** HP Z600 or HP Z420 Workstation (Recommended Intel Xeon)

**Browser Support**

The table to the right describes the list of browsers supported by the system.

**Note:** This table relates only to formally released versions.
About GE Healthcare

GE Healthcare provides transformational medical technologies and services that are shaping a new age of patient care. Our broad expertise in medical imaging and information technologies, medical diagnostics, patient monitoring systems, drug discovery, biopharmaceutical manufacturing technologies, performance improvement and performance solutions services helps our customers to deliver better care to more people around the world at a lower cost. In addition, we partner with healthcare leaders, striving to leverage the global policy change necessary to implement a successful shift to sustainable healthcare systems.

Our “healthymagination” vision for the future invites the world to join us on our journey as we continuously develop innovations focused on reducing costs, increasing access, and improving quality around the world. Headquartered in the United Kingdom, GE Healthcare is a unit of General Electric Company (NYSE: GE). Worldwide, GE Healthcare employees are committed to serving healthcare professionals and their patients in more than 100 countries. For more information about GE Healthcare, visit our website at www.gehealthcare.com

GE Healthcare
540 West Northwest Highway
Barrington, IL 60010
U.S.A.

www.gehealthcare.com